
Algorithms and Cuda Concepts

Hexahedron for FE Solid Mechanics

SAND2013-8675C

John Mitchell

&

Christian Trott

Sandia National Laboratories

Albuquerque, New Mexico

PGI OpenACC Short Course

October 9-10, 2013

Sandia National Laboratories is a multi-program laboratory managed and operated, by Sandia Corporation a wholly

owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security

Administration under contract DE-AC04-94AL8500.

Finite Element Calculations

Solid Mechanics

Mathematical model and discretization of laboratory test

Momentum equation

Material model

Unstructured mesh

Tensile test

Uniform Gradient Hex

Key finite element for solid mechanics modeling

Uniform Gradient Hex

Gradient Implementation Concepts

High arithmetic intensity

Use shared memory

Size thread blocks to accomodate shared memory

Maximize use/work of/on shared memory

Amortize cost of global access across lots of arithmetic

Shape thread blocks: shape(EPB,dim)

Observe column-major ordering of threads

Align thread layout w/global memory gets/puts

Select dim: accomodate calculation

Select dim: eliminate branching within warp

EPB>=32 && 0==EPB%32

∗ Prevents warps from crossing axis boundary

Gradient calculation (EPB: elements per thread block)

Thread hierarchy

dim3 grid((nem+EPB-1)/EPB,1,1)

dim3 block(EPB,3,1)

Kernel pseudocode

element id

e=blockIdx.x*EPB+threadIdx.x

’early exit’

if(e>=nem) return;

shared memory

__shared__ real biI[EPB][3][8];

axis

axis=threadIdx.y

no branching switch

switch(axis){

case 0:

biI[e][0][0:8]=...

break;

...

Column-major layout

Gradient calculation on hex

Gather concepts

Cartoon/Schematic: gather is required at some stage

Coordinates (considerations): time integrator, hourglass implementation, MPI

Coordinates shared: computation of BiI and element volume

Displacements shared: computation of ∂ u
∂ y

Gradient calculation on hex

Calculations: gradient operator, element volume

Gradient operator: biI

Later, use each thread ti to copy rows biI into global memory

Element volume: V

syncthreads

Use t1: Vx← (Vx +Vy +Vz)/3

syncthreads

Gradient calculation on hex

Calculations: ∂u
∂y

, F

Displacement gradient: ∂ u
∂ y

Deformation gradient: F =
(

I− ∂ u
∂ y

)

−1

Use analytical expression for 3×3 inverse

Assign row to each thread

Redundantly calculate determinant

Assign global memory for F on each element

Gradient calculation on hex

shared memory requirements

Shared memory per element (64 bit real)

field shape bytes

displacement u 3×8 192

coordinates y 3×8 192

gradient operator biI 3×8 192

element volume V 3×1 24

displacement gradient ui,j 3×3 72

TOTAL 672

Size thread blocks and grid

Respect 48k shared memory limitation per SM

Ensure warp sizes of at least 32

Since shared memory is a limiter, size grid with nem

Choices for thread blocks: EPB =elements per thread block

EPB = 32→ 21k shared memory; get 2 blocks per SM

EPB = 64→ 43k shared memory; get 1 blocks per SM

Element coloring

What is it? Why do we need it?

Element/material evaluation for a time step

cuda streams & host calculations (schematic/outline)

Loop material/element blocks (cuda streams)

cudaMemcpyAsync: gather nodal field(s) to element on device

Asynchronous gradient calculation

cudaMemcpyAsync: copy F to host

Loop material/element blocks (host calculations)

Compute polar decomposition

Compute stress

Loop material/element blocks (cuda streams)

cudaMemcpyAsync: copy polar decomposition & stress to device

Asynchronous hourglass calculation

Loop colors, loop material/element blocks

Asynchronous stress divergence and assembly

Closing

Questions/Discussion for OpenACC

Can these concepts/constructs be replicated using OpenACC

Control over shape of thread blocks

Device shared memory

Barrier __syncthreads()

Early exit on warps

Switch statements on warps

Streams

